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CONGESTION CONTROL 
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Congestion Control 
 

• When one part of the subnet (e.g. one or more 
routers in an area) becomes overloaded, 
congestion results.  

• Because routers are receiving packets faster than 
they can forward them, one of two things must 
happen:  
– The subnet must prevent additional packets from 

entering the congested region until those already 
present can be processed.  

– The congested routers can discard queued packets to 
make room for those that are arriving.  
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Factors that Cause Congestion 

• Packet arrival rate exceeds the outgoing link 
capacity. 

• Insufficient memory to store arriving packets 

• Bursty traffic 

• Slow processor 

 

4 



Congestion Control vs Flow Control 

• Congestion control is a global issue – involves 
every router and host within the subnet 

• Flow control – scope is point-to-point; involves 
just sender and receiver. 
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Congestion Control, cont. 

• Congestion Control is concerned with efficiently 
using a network at high load. 

• Several techniques can be employed. These 
include: 

– Warning bit 

– Choke packets 

– Load shedding 

– Random early discard 

– Traffic shaping 

• The first 3 deal with congestion detection and 
recovery. The last  2 deal with congestion 
avoidance. 
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Warning Bit 

• A special bit in the packet header is set by the 
router to warn the source when congestion is 
detected. 

• The bit is copied and piggy-backed on the ACK 
and sent to the sender. 

• The sender monitors the number of ACK 
packets it receives with the warning bit set 
and adjusts its transmission rate accordingly. 

7 



Choke Packets 
• A more direct way of telling the source to 

slow down. 

• A choke packet is a control packet 
generated at a congested node and 
transmitted to restrict traffic flow. 

• The source, on receiving the choke packet 
must reduce its transmission rate by a 
certain percentage. 

• An example of a choke packet is the ICMP 
Source Quench Packet. 
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Hop-by-Hop Choke Packets 

• Over long distances or at high speeds choke 
packets are not very effective.  

• A more efficient method is to send to choke 
packets hop-by-hop. 

• This requires each hop to reduce its 
transmission even before the choke packet 
arrive at the source. 
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Load Shedding 

 • When buffers become full, routers simply discard 
packets. 

• Which packet is chosen to be the victim depends 
on the application and on the error strategy used 
in the data link layer.  

• For a file transfer, for, e.g. cannot discard older 
packets since this will cause a gap in the received 
data. 

• For real-time voice or video it is probably better 
to 

 throw away old data and keep new packets.  

• Get the application to mark packets with discard 
priority. 
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Random Early Discard (RED) 

• This is a proactive approach in which the 
router discards one or more packets before 
the buffer becomes completely full. 

• Each time  a packet arrives, the RED 
algorithm computes the average queue 
length, avg. 

• If avg is lower than some lower threshold, 
congestion is assumed to be minimal or 
non-existent and the packet is queued. 
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RED, cont. 

• If avg is greater than some upper 
threshold, congestion is assumed to be 
serious and the packet is discarded. 

• If avg is between the two thresholds, this 
might indicate the onset of congestion. The 
probability of congestion is then calculated. 
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Traffic Shaping 

• Another method of congestion control is to 
“shape” the traffic before it enters the 
network. 

• Traffic shaping controls the rate at which 
packets are sent (not just how many). Used 
in ATM and Integrated Services networks.  

• At connection set-up time, the sender and 
carrier negotiate a traffic pattern (shape). 

• Two traffic shaping algorithms are: 
– Leaky Bucket 

– Token Bucket 
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The Leaky Bucket Algorithm 

• The Leaky Bucket Algorithm used to control 
rate in a network. It is implemented as a 
single-server queue with constant service 
time. If the bucket (buffer) overflows then 
packets are discarded. 
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The Leaky Bucket Algorithm 

(a) A leaky bucket with water.  (b) a leaky bucket with 
packets. 
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Leaky Bucket Algorithm, cont. 
• The leaky bucket enforces a constant output rate  

(average rate) regardless of the burstiness of the 
input. Does nothing when input is idle. 

•  The host injects one packet per clock tick onto the 
network. This results in a uniform flow of packets, 
smoothing out bursts and reducing congestion. 

• When packets are the same size (as in ATM cells), 
the one packet per tick is okay. For variable length 
packets though, it is better to allow a fixed number 
of bytes per tick. E.g. 1024 bytes per tick will allow 
one 1024-byte packet or two 512-byte packets or 
four 256-byte packets on 1 tick.  
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Token Bucket Algorithm 

• In contrast to the LB, the Token Bucket Algorithm, 
allows the output rate to vary, depending on the 
size of the burst.  

• In the TB algorithm, the bucket holds tokens.  To 
transmit a packet, the host must capture and 
destroy one token. 

• Tokens are generated by a clock at the rate of one 
token every t sec. 

• Idle hosts can capture and save up tokens (up to 
the max. size of the bucket) in order to send 
larger bursts later. 
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The Token Bucket Algorithm 

(a) Before.      (b)   After. 
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Leaky Bucket vs Token Bucket 
• LB discards packets; TB does not. TB 

discards tokens. 

• With TB, a packet can only be transmitted if 
there are enough tokens to cover its length 
in bytes. 

• LB sends packets at an average rate. TB 
allows for large bursts to be sent faster by 
speeding up the output. 

• TB allows saving up tokens (permissions) to 
send large bursts. LB does not allow saving. 
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Principles of Congestion Control 

Congestion: 

• informally: “too many sources sending too much data too 
fast for network to handle” 

• manifestations: 

– lost packets (buffer overflow at routers) 

– long delays (queuing in router buffers) 

• a highly important problem! 
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Causes/costs of congestion: scenario 1  

• two senders, two receivers 

• one router,  

• infinite buffers  

• no retransmission 
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Causes/costs of congestion: scenario 1  

• Throughput increases with load 

• Maximum total load C (Each session C/2) 

• Large delays when congested 
– The load is stochastic 
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Causes/costs of congestion: scenario 2  

• one router, finite buffers  

• sender retransmission of lost packet 
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Causes/costs of congestion: scenario 2  
• always:                   (goodput) 

– Like to maximize goodput! 

• “perfect” retransmission: 

– retransmit only when loss:  

• Actual retransmission of delayed (not lost) packet 

•  makes         larger (than perfect case) for same 
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Causes/costs of congestion: scenario 2  
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“costs” of congestion:  

 more work (retrans) for given “goodput” 

 unneeded retransmissions: link carries (and delivers) 
multiple copies of pkt 
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Causes/costs of congestion: scenario 3  
• four senders 

• multihop paths 

• timeout/retransmit 
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Causes/costs of congestion: scenario 3  
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Another “cost” of congestion:  

 when packet dropped, any “upstream” transmission 
capacity used for that packet was wasted! 



Approaches towards congestion control 

End-end congestion control: 
• no explicit feedback from 

network 

• congestion inferred from end-
system observed loss, delay 

• approach taken by TCP 

Network-assisted congestion 
control: 

• routers provide feedback to 
end systems 

– single bit indicating 
congestion (SNA, DECbit, 
TCP/IP ECN, ATM) 

– explicit rate sender should 
send at 
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Two broad approaches towards congestion control: 



Goals of congestion control 

• Throughput: 

– Maximize goodput 

– the total number of bits end-end 

• Fairness: 

– Give different sessions “equal” share. 

– Max-min fairness 

• Maximize the minimum rate session. 

– Single link: 

• Capacity R 

• sessions m 

• Each sessions: R/m 
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Max-min fairness 

• Model: Graph G(V,e) and sessions s1 … sm 

• For each session si a rate ri is selected. 

• The rates are a Max-Min fair allocation: 

– The allocation is maximal 

• No ri can be simply increased 

– Increasing allocation ri requires reducing 

• Some session j 

• rj ≤ ri 

• Maximize minimum rate session. 
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Max-min fairness: Algorithm 

• Model: Graph G(V,e) and sessions s1 … sm 

• Algorithmic view: 

– For each link compute its fair share f(e). 

• Capacity / # session 

– select minimal fair share link. 

– Each session passing on it, allocate f(e). 

– Subtract the capacities and delete sessions 

– continue recessively. 

• Fluid view. 
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Max-min fairness 

• Example 

 

 

 

 

• Throughput versus fairness. 
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Case study: ATM ABR congestion control 

ABR: available bit rate: 

• “elastic service”  

• if sender’s path “underloaded”:  

– sender can use available bandwidth 

• if sender’s path congested:  

– sender lowers rate 

– a minimum guaranteed rate 

• Aim:  

– coordinate increase/decrease rate 

– avoid loss! 
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Case study: ATM ABR congestion control 

RM (resource management) cells: 

• sent by sender, in between data cells 
– one out of every 32 cells. 

• RM cells returned to sender by receiver 

• Each router modifies the RM cell 

• Info in RM cell set by switches 

– “network-assisted”  

• 2 bit info. 

– NI bit: no increase in rate (mild congestion) 

– CI bit: congestion indication (lower rate) 
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Case study: ATM ABR congestion control 

• two-byte ER (explicit rate) field in RM cell 
– congested switch may lower ER value in cell 

– sender’ send rate thus minimum supportable rate on path 

• EFCI bit in data cells: set to 1 in congested switch 
– if data cell preceding RM cell has EFCI set, sender sets CI bit in 

returned RM cell 
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Case study: ATM ABR congestion control 

• How does the router selects its action: 

–  selects a rate 

– Set congestion bits 

– Vendor dependent functionality 

• Advantages: 

– fast response 

– accurate response 

• Disadvantages: 

– network level design 

– Increase router tasks (load). 

– Interoperability issues. 
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End to end 
control 
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End to end feedback 

• Abstraction: 

– Alarm flag.  

– observable at the end stations 
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Simple Abstraction 

39 



Simple Abstraction 
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Simple feedback model 

• Every RTT receive feedback 

– High Congestion 

Decrease rate 

 

– Low congestion 

Increase rate 

 

 

• Variable rate controls the sending rate. 
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Multiplicative Update 

• Congestion: 

– Rate = Rate/2 

• No Congestion: 

– Rate= Rate *2 

• Performance  

– Fast response 

– Un-fair: 

Ratios unchanged 
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Additive Update 

• Congestion: 

– Rate = Rate -1 

• No Congestion: 

– Rate= Rate +1 

• Performance  

– Slow response 

• Fairness:  

– Divides spare BW equally 

– Difference remains unchanged 
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AIMD Scheme 

• Additive Increase 

– Fairness: ratios improves 

• Multiplicative Decrease 

– Fairness: ratio unchanged 

– Fast response 

• Performance: 

– Congestion - 

Fast response 

– Fairness 44 
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AIMD: Two users, One link 
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TCP: 
Congestion 

Control 
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TCP Congestion Control 
 Closed-loop, end-to-end,  window-based  congestion 

control 

 Designed by Van Jacobson in late 1980s, based on 
the AIMD alg. of Dah-Ming Chu and Raj Jain 

 Works well so far: the bandwidth of the Internet 
has increased by more than 200,000 times 

Many versions 
 TCP/Tahoe: this is a less optimized version 

 TCP/Reno: many OSs today  implement Reno type 
congestion control 

 TCP/Vegas: not currently used 

For more details: see TCP/IP illustrated; or read 

http://lxr.linux.no/source/net/ipv4/tcp_input.c for linux implementation 



TCP & AIMD: congestion 

• Dynamic window size [Van Jacobson] 

– Initialization: MI  

• Slow start 

– Steady state: AIMD  

• Congestion Avoidance 

• Congestion = timeout 

– TCP Taheo 

• Congestion = timeout || 3 duplicate ACK 

– TCP Reno & TCP new Reno 

• Congestion = higher latency 

– TCP Vegas 
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TCP Congestion Control 
• end-end control (no network assistance) 

• transmission rate limited by congestion window size, 
Congwin, over segments: 
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 w segments, each with MSS bytes sent in one RTT: 

throughput =  

w * MSS  

RTT  

Bytes/sec 

Congwin 



TCP congestion control: 

• “probing” for usable 
bandwidth:  
– ideally: transmit as fast as 

possible (Congwin as large 
as possible) without loss 

– increase Congwin until 
congestion (loss) 

– Congestion: decrease 
Congwin, then begin 
probing (increasing) again 

 

• Basic structure: 

• two “phases” 
– slow start - MI 

– congestion avoidance- AIMD 

•  important variables: 
– Congwin: window size 

– threshold: defines threshold 
between the slow start phase and 
the  congestion avoidance phase 
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TCP Slowstart: MI 

• exponential increase (per 
RTT) in window size (not 
so slow!) 

• In case of timeout: 
– Threshold=CongWin/2 
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initialize: Congwin = 1 

for (each segment ACKed) 

      Congwin++ 

until (congestion event OR 

        CongWin > threshold) 

Slowstart algorithm 

Host A 

R
T

T
 

Host B 

time 



TCP Taheo Congestion Avoidance 
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/* slowstart is over        */  

/* Congwin > threshold */ 

Until (timeout) { /* loss event */ 

  every ACK: 

      Congwin += 1/Congwin 

  } 

threshold = Congwin/2 

Congwin = 1 

perform slowstart 

Congestion avoidance 

TCP Taheo 



TCP Reno 
• Fast retransmit: 

– Try to avoid waiting for timeout 

 

• Fast recovery: 

– Try to avoid slowstart. 

 

• Single packet drop: great! 
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Fast Retransmit 
• Timeout period  often 

relatively long: 
– long delay before resending 

lost packet 

 

• Detect lost segments via 
duplicate ACKs 
– sender often sends many 

segments back-to-back 

– if segment is lost, there will 
likely be many duplicate 
ACKs 

• If sender receives 3 ACKs 
for the same data, it 
supposes that segment 
after ACKed data was lost: 
– resend segment before 

timer expires 
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Fast Recovery 
• Fast recovery: 

– After retransmission do not enter slowstart. 

– Threshold = Congwin/2 

– Congwin = 3 + Congwin/2 

– Each duplicate ACK received Congwin++ 

– After new ACK 

•  Congwin = Threshold  

• return to congestion avoidance 
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TCP Congestion Window Trace 
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TCP Vegas: 

• Idea: track the RTT 

– Try to avoid packet loss 

– latency increases: lower rate 

– latency very low: increase rate 

• Implementation: 

– sample_RTT: current RTT 

– Base_RTT: min. over sample_RTT 

– Expected = Congwin / Base_RTT 

– Actual   = number of packets sent / sample_RTT 

–  =Expected - Actual 
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TCP Vegas 

•  = Expected - Actual 

• Congestion Avoidance: 

– two parameters:  and , < 

– If ( < ) Congwin = Congwin  +1 

– If ( > ) Congwin = Congwin -1 

– Otherwise no change 

– Note: Once per RTT 

• Slowstart 

– parameter  

– If ( > ) then move to congestion avoidance 

• Timeout: same as TCP Taheo 

59 



TCP Dynamics: Rate 

• TCP Reno with NO Fast Retransmit or Recovery 

• Sending rate:  Congwin*MSS / RTT 

• Assume fixed RTT  
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W 

W/2 

Actual Sending rate:   
 between W*MSS / RTT and (1/2) W*MSS / RTT  

 Average (3/4) W*MSS / RTT  



TCP Dynamics: Loss 

• Loss rate (TCP Reno) 

– No Fast Retransmit or Recovery 

• Consider a cycle 
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 Total packet sent: 
  about (3/8) W2 MSS/RTT  = O(W2) 

One packet loss 

 Loss Probability: p=O(1/W2) or W=O(1/p) 

W 

W/2 



TCP latency modeling 

Q: How long does it take to 
receive an object from a Web 
server after sending a 
request?  

• TCP connection establishment 

• data transfer delay 

 

Notation, assumptions: 

• Assume one link between 
client and server of rate R 

• Assume: fixed congestion 
window, W segments 

• S: MSS (bits) 

• O: object size (bits) 

• no retransmissions 
– no loss, no corruption 

 

 

62 



TCP latency modeling 
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Optimal Setting: Time = O/R 

 

Two cases to consider: 
 WS/R > RTT + S/R:  

 ACK for first segment in window returns 
before window’s worth of data sent 

 WS/R < RTT + S/R:  
 wait for ACK after sending window’s worth of 

data sent 



TCP latency Modeling 
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Case 1: latency = 2RTT + O/R Case 2: latency = 2RTT + O/R 
+ (K-1)[S/R + RTT - WS/R] 

K:= O/WS 



TCP Latency Modeling: Slow Start 

• Now suppose window grows according to slow start.  

• Will show that the latency of one object of size O is:  
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-  where Q is the number of times the server would stall  
   if the object were of infinite size. 
 

- and  K is the number of windows that cover the object. 



TCP Latency Modeling: Slow Start (cont.) 
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Example: 
 

O/S  = 15 segments 

 

K = 4 windows 

 

Q = 2 

 

P = min{K-1,Q} = 2 

 

Server stalls P=2 times. 

 

 

 

 



TCP Latency Modeling: Slow Start (cont.) 
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TCP:  
Flow Control 
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TCP Flow Control 

receiver: explicitly informs 
sender of (dynamically 
changing) amount of free 
buffer space  

– RcvWindow field in 
TCP segment 

sender: keeps the amount of 
transmitted, unACKed data 
less than most recently 
received RcvWindow 
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sender won’t overrun 
receiver’s buffers by 
transmitting too much, 
 too fast 

flow control 

receiver buffering 

RcvBuffer = size or TCP Receive Buffer 
 
RcvWindow = amount of spare room in Buffer  
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TCP Flow Control: How it Works 

• spare room in buffer 
= RcvWindow 
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source port # dest port # 

application 
data  
(variable length) 

sequence number 

acknowledgement number 

rcvr window size 

ptr urgent data checksum 

F S R P A U 
head 
len 

not 
used 

Options (variable length) 



TCP: setting 
timeouts 
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TCP Round Trip Time and Timeout 

Q: how to set TCP 
timeout value? 

• longer than RTT 

– note: RTT will vary 

• too short: premature 
timeout 

– unnecessary 
retransmissions 

• too long: slow reaction to 
segment loss 

Q: how to estimate RTT? 
• SampleRTT: measured time from 

segment transmission until ACK 
receipt 

– ignore retransmissions, 
cumulatively ACKed segments 

• SampleRTT will vary, want 
estimated RTT “smoother” 

– use several recent measurements, 
not just current SampleRTT 
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High-level Idea 

Set timeout = average + safe margin 
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Estimating Round Trip Time 
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr
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SampleRTT Estimated RTT

EstimatedRTT = (1- )*EstimatedRTT + *SampleRTT 

 Exponential weighted moving average 

 influence of past sample decreases exponentially fast 

 typical value:  = 0.125 

 SampleRTT: measured time from  
segment transmission until ACK  
receipt 
 SampleRTT will vary, want a  
“smoother” estimated RTT 

use several recent  
measurements, not  
just current SampleRTT 
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Setting Timeout 
Problem: 

• using the average of SampleRTT will generate  
many timeouts due to network variations 
 

Solution: 

• EstimtedRTT plus “safety margin” 
– large variation in EstimatedRTT -> larger safety margin 

TimeoutInterval = EstimatedRTT + 4*DevRTT 

DevRTT = (1-)*DevRTT + *|SampleRTT-EstimatedRTT| 

 

(typically,  = 0.25) 

 Then set timeout interval: 

RTT 

freq. 
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An Example TCP Session 


