
1

CONGESTION CONTROL

2

Congestion Control

• When one part of the subnet (e.g. one or more
routers in an area) becomes overloaded,
congestion results.

• Because routers are receiving packets faster than
they can forward them, one of two things must
happen:
– The subnet must prevent additional packets from

entering the congested region until those already
present can be processed.

– The congested routers can discard queued packets to
make room for those that are arriving.

3

Factors that Cause Congestion

• Packet arrival rate exceeds the outgoing link
capacity.

• Insufficient memory to store arriving packets

• Bursty traffic

• Slow processor

4

Congestion Control vs Flow Control

• Congestion control is a global issue – involves
every router and host within the subnet

• Flow control – scope is point-to-point; involves
just sender and receiver.

5

Congestion Control, cont.

• Congestion Control is concerned with efficiently
using a network at high load.

• Several techniques can be employed. These
include:

– Warning bit

– Choke packets

– Load shedding

– Random early discard

– Traffic shaping

• The first 3 deal with congestion detection and
recovery. The last 2 deal with congestion
avoidance.

6

Warning Bit

• A special bit in the packet header is set by the
router to warn the source when congestion is
detected.

• The bit is copied and piggy-backed on the ACK
and sent to the sender.

• The sender monitors the number of ACK
packets it receives with the warning bit set
and adjusts its transmission rate accordingly.

7

Choke Packets
• A more direct way of telling the source to

slow down.

• A choke packet is a control packet
generated at a congested node and
transmitted to restrict traffic flow.

• The source, on receiving the choke packet
must reduce its transmission rate by a
certain percentage.

• An example of a choke packet is the ICMP
Source Quench Packet.

8

Hop-by-Hop Choke Packets

• Over long distances or at high speeds choke
packets are not very effective.

• A more efficient method is to send to choke
packets hop-by-hop.

• This requires each hop to reduce its
transmission even before the choke packet
arrive at the source.

9

Load Shedding

 • When buffers become full, routers simply discard
packets.

• Which packet is chosen to be the victim depends
on the application and on the error strategy used
in the data link layer.

• For a file transfer, for, e.g. cannot discard older
packets since this will cause a gap in the received
data.

• For real-time voice or video it is probably better
to

 throw away old data and keep new packets.

• Get the application to mark packets with discard
priority.

10

Random Early Discard (RED)

• This is a proactive approach in which the
router discards one or more packets before
the buffer becomes completely full.

• Each time a packet arrives, the RED
algorithm computes the average queue
length, avg.

• If avg is lower than some lower threshold,
congestion is assumed to be minimal or
non-existent and the packet is queued.

11

RED, cont.

• If avg is greater than some upper
threshold, congestion is assumed to be
serious and the packet is discarded.

• If avg is between the two thresholds, this
might indicate the onset of congestion. The
probability of congestion is then calculated.

12

Traffic Shaping

• Another method of congestion control is to
“shape” the traffic before it enters the
network.

• Traffic shaping controls the rate at which
packets are sent (not just how many). Used
in ATM and Integrated Services networks.

• At connection set-up time, the sender and
carrier negotiate a traffic pattern (shape).

• Two traffic shaping algorithms are:
– Leaky Bucket

– Token Bucket

 13

The Leaky Bucket Algorithm

• The Leaky Bucket Algorithm used to control
rate in a network. It is implemented as a
single-server queue with constant service
time. If the bucket (buffer) overflows then
packets are discarded.

14

The Leaky Bucket Algorithm

(a) A leaky bucket with water. (b) a leaky bucket with
packets.

15

Leaky Bucket Algorithm, cont.
• The leaky bucket enforces a constant output rate

(average rate) regardless of the burstiness of the
input. Does nothing when input is idle.

• The host injects one packet per clock tick onto the
network. This results in a uniform flow of packets,
smoothing out bursts and reducing congestion.

• When packets are the same size (as in ATM cells),
the one packet per tick is okay. For variable length
packets though, it is better to allow a fixed number
of bytes per tick. E.g. 1024 bytes per tick will allow
one 1024-byte packet or two 512-byte packets or
four 256-byte packets on 1 tick.

16

Token Bucket Algorithm

• In contrast to the LB, the Token Bucket Algorithm,
allows the output rate to vary, depending on the
size of the burst.

• In the TB algorithm, the bucket holds tokens. To
transmit a packet, the host must capture and
destroy one token.

• Tokens are generated by a clock at the rate of one
token every t sec.

• Idle hosts can capture and save up tokens (up to
the max. size of the bucket) in order to send
larger bursts later.

17

The Token Bucket Algorithm

(a) Before. (b) After.
18

5-34

Leaky Bucket vs Token Bucket
• LB discards packets; TB does not. TB

discards tokens.

• With TB, a packet can only be transmitted if
there are enough tokens to cover its length
in bytes.

• LB sends packets at an average rate. TB
allows for large bursts to be sent faster by
speeding up the output.

• TB allows saving up tokens (permissions) to
send large bursts. LB does not allow saving.

19

Principles of Congestion Control

Congestion:

• informally: “too many sources sending too much data too
fast for network to handle”

• manifestations:

– lost packets (buffer overflow at routers)

– long delays (queuing in router buffers)

• a highly important problem!

20

Causes/costs of congestion: scenario 1

• two senders, two receivers

• one router,

• infinite buffers

• no retransmission

21

Causes/costs of congestion: scenario 1

• Throughput increases with load

• Maximum total load C (Each session C/2)

• Large delays when congested
– The load is stochastic

22

Causes/costs of congestion: scenario 2

• one router, finite buffers

• sender retransmission of lost packet

23

Causes/costs of congestion: scenario 2
• always: (goodput)

– Like to maximize goodput!

• “perfect” retransmission:

– retransmit only when loss:

• Actual retransmission of delayed (not lost) packet

• makes larger (than perfect case) for same

24

l
in

l
out

=

l
out

l
in

l
out

>

l
in

Causes/costs of congestion: scenario 2

25

“costs” of congestion:

 more work (retrans) for given “goodput”

 unneeded retransmissions: link carries (and delivers)
multiple copies of pkt

inin ll '

l
o

u
t

l
o

u
t

l’in

l
o

u
t

l’in

Causes/costs of congestion: scenario 3
• four senders

• multihop paths

• timeout/retransmit

26

l
in

Q: what happens as
and increase ? l

in

Causes/costs of congestion: scenario 3

27

Another “cost” of congestion:

 when packet dropped, any “upstream” transmission
capacity used for that packet was wasted!

Approaches towards congestion control

End-end congestion control:
• no explicit feedback from

network

• congestion inferred from end-
system observed loss, delay

• approach taken by TCP

Network-assisted congestion
control:

• routers provide feedback to
end systems

– single bit indicating
congestion (SNA, DECbit,
TCP/IP ECN, ATM)

– explicit rate sender should
send at

28

Two broad approaches towards congestion control:

Goals of congestion control

• Throughput:

– Maximize goodput

– the total number of bits end-end

• Fairness:

– Give different sessions “equal” share.

– Max-min fairness

• Maximize the minimum rate session.

– Single link:

• Capacity R

• sessions m

• Each sessions: R/m
29

Max-min fairness

• Model: Graph G(V,e) and sessions s1 … sm

• For each session si a rate ri is selected.

• The rates are a Max-Min fair allocation:

– The allocation is maximal

• No ri can be simply increased

– Increasing allocation ri requires reducing

• Some session j

• rj ≤ ri

• Maximize minimum rate session.

30

Max-min fairness: Algorithm

• Model: Graph G(V,e) and sessions s1 … sm

• Algorithmic view:

– For each link compute its fair share f(e).

• Capacity / # session

– select minimal fair share link.

– Each session passing on it, allocate f(e).

– Subtract the capacities and delete sessions

– continue recessively.

• Fluid view.
31

Max-min fairness

• Example

• Throughput versus fairness.

32

Case study: ATM ABR congestion control

ABR: available bit rate:

• “elastic service”

• if sender’s path “underloaded”:

– sender can use available bandwidth

• if sender’s path congested:

– sender lowers rate

– a minimum guaranteed rate

• Aim:

– coordinate increase/decrease rate

– avoid loss!

33

Case study: ATM ABR congestion control

RM (resource management) cells:

• sent by sender, in between data cells
– one out of every 32 cells.

• RM cells returned to sender by receiver

• Each router modifies the RM cell

• Info in RM cell set by switches

– “network-assisted”

• 2 bit info.

– NI bit: no increase in rate (mild congestion)

– CI bit: congestion indication (lower rate)

34

Case study: ATM ABR congestion control

• two-byte ER (explicit rate) field in RM cell
– congested switch may lower ER value in cell

– sender’ send rate thus minimum supportable rate on path

• EFCI bit in data cells: set to 1 in congested switch
– if data cell preceding RM cell has EFCI set, sender sets CI bit in

returned RM cell

35

Case study: ATM ABR congestion control

• How does the router selects its action:

– selects a rate

– Set congestion bits

– Vendor dependent functionality

• Advantages:

– fast response

– accurate response

• Disadvantages:

– network level design

– Increase router tasks (load).

– Interoperability issues.

36

End to end
control

37

End to end feedback

• Abstraction:

– Alarm flag.

– observable at the end stations

38

Simple Abstraction

39

Simple Abstraction

40

Simple feedback model

• Every RTT receive feedback

– High Congestion

Decrease rate

– Low congestion

Increase rate

• Variable rate controls the sending rate.

 41

Multiplicative Update

• Congestion:

– Rate = Rate/2

• No Congestion:

– Rate= Rate *2

• Performance

– Fast response

– Un-fair:

Ratios unchanged

42

Additive Update

• Congestion:

– Rate = Rate -1

• No Congestion:

– Rate= Rate +1

• Performance

– Slow response

• Fairness:

– Divides spare BW equally

– Difference remains unchanged
43

AIMD Scheme

• Additive Increase

– Fairness: ratios improves

• Multiplicative Decrease

– Fairness: ratio unchanged

– Fast response

• Performance:

– Congestion -

Fast response

– Fairness 44

overflow

AIMD: Two users, One link

45

BW limit

Fairness

Rate of User 1

R
a
te

 o
f

 U
se

r
2

TCP:
Congestion

Control

46

47 47

TCP Congestion Control
 Closed-loop, end-to-end, window-based congestion

control

 Designed by Van Jacobson in late 1980s, based on
the AIMD alg. of Dah-Ming Chu and Raj Jain

 Works well so far: the bandwidth of the Internet
has increased by more than 200,000 times

Many versions
 TCP/Tahoe: this is a less optimized version

 TCP/Reno: many OSs today implement Reno type
congestion control

 TCP/Vegas: not currently used

For more details: see TCP/IP illustrated; or read

http://lxr.linux.no/source/net/ipv4/tcp_input.c for linux implementation

TCP & AIMD: congestion

• Dynamic window size [Van Jacobson]

– Initialization: MI

• Slow start

– Steady state: AIMD

• Congestion Avoidance

• Congestion = timeout

– TCP Taheo

• Congestion = timeout || 3 duplicate ACK

– TCP Reno & TCP new Reno

• Congestion = higher latency

– TCP Vegas

48

TCP Congestion Control
• end-end control (no network assistance)

• transmission rate limited by congestion window size,
Congwin, over segments:

49

 w segments, each with MSS bytes sent in one RTT:

throughput =

w * MSS

RTT

Bytes/sec

Congwin

TCP congestion control:

• “probing” for usable
bandwidth:
– ideally: transmit as fast as

possible (Congwin as large
as possible) without loss

– increase Congwin until
congestion (loss)

– Congestion: decrease
Congwin, then begin
probing (increasing) again

• Basic structure:

• two “phases”
– slow start - MI

– congestion avoidance- AIMD

• important variables:
– Congwin: window size

– threshold: defines threshold
between the slow start phase and
the congestion avoidance phase

50

51

Visualization of the Two Phases

threshold

C
o

n
g

w
in

g

Slow start

Congestion avoidance

TCP Slowstart: MI

• exponential increase (per
RTT) in window size (not
so slow!)

• In case of timeout:
– Threshold=CongWin/2

52

initialize: Congwin = 1

for (each segment ACKed)

 Congwin++

until (congestion event OR

 CongWin > threshold)

Slowstart algorithm

Host A

R
T

T

Host B

time

TCP Taheo Congestion Avoidance

53

/* slowstart is over */

/* Congwin > threshold */

Until (timeout) { /* loss event */

 every ACK:

 Congwin += 1/Congwin

 }

threshold = Congwin/2

Congwin = 1

perform slowstart

Congestion avoidance

TCP Taheo

TCP Reno
• Fast retransmit:

– Try to avoid waiting for timeout

• Fast recovery:

– Try to avoid slowstart.

• Single packet drop: great!

54

55

Fast Retransmit
• Timeout period often

relatively long:
– long delay before resending

lost packet

• Detect lost segments via
duplicate ACKs
– sender often sends many

segments back-to-back

– if segment is lost, there will
likely be many duplicate
ACKs

• If sender receives 3 ACKs
for the same data, it
supposes that segment
after ACKed data was lost:
– resend segment before

timer expires

55

1 2 3 4 5 6

2 3 4

Packets

Acknowledgements (waiting seq#)

4 4

7

4

Fast Recovery
• Fast recovery:

– After retransmission do not enter slowstart.

– Threshold = Congwin/2

– Congwin = 3 + Congwin/2

– Each duplicate ACK received Congwin++

– After new ACK

• Congwin = Threshold

• return to congestion avoidance

56

TCP Congestion Window Trace

57

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

Time

C
o

n
g

e
s
ti

o
n

 W
in

d
o

w

threshold

congestion
windowtimeouts

slow start period

additive increase

fast retransmission

TCP Vegas:

• Idea: track the RTT

– Try to avoid packet loss

– latency increases: lower rate

– latency very low: increase rate

• Implementation:

– sample_RTT: current RTT

– Base_RTT: min. over sample_RTT

– Expected = Congwin / Base_RTT

– Actual = number of packets sent / sample_RTT

–  =Expected - Actual

58

TCP Vegas

•  = Expected - Actual

• Congestion Avoidance:

– two parameters:  and , <

– If ( < ) Congwin = Congwin +1

– If ( > ) Congwin = Congwin -1

– Otherwise no change

– Note: Once per RTT

• Slowstart

– parameter 

– If ( > ) then move to congestion avoidance

• Timeout: same as TCP Taheo

59

TCP Dynamics: Rate

• TCP Reno with NO Fast Retransmit or Recovery

• Sending rate: Congwin*MSS / RTT

• Assume fixed RTT

60

W

W/2

Actual Sending rate:
 between W*MSS / RTT and (1/2) W*MSS / RTT

 Average (3/4) W*MSS / RTT

TCP Dynamics: Loss

• Loss rate (TCP Reno)

– No Fast Retransmit or Recovery

• Consider a cycle

61

 Total packet sent:
 about (3/8) W2 MSS/RTT = O(W2)

One packet loss

 Loss Probability: p=O(1/W2) or W=O(1/p)

W

W/2

TCP latency modeling

Q: How long does it take to
receive an object from a Web
server after sending a
request?

• TCP connection establishment

• data transfer delay

Notation, assumptions:

• Assume one link between
client and server of rate R

• Assume: fixed congestion
window, W segments

• S: MSS (bits)

• O: object size (bits)

• no retransmissions
– no loss, no corruption

62

TCP latency modeling

63

Optimal Setting: Time = O/R

Two cases to consider:
 WS/R > RTT + S/R:

 ACK for first segment in window returns
before window’s worth of data sent

 WS/R < RTT + S/R:
 wait for ACK after sending window’s worth of

data sent

TCP latency Modeling

64

Case 1: latency = 2RTT + O/R Case 2: latency = 2RTT + O/R
+ (K-1)[S/R + RTT - WS/R]

K:= O/WS

TCP Latency Modeling: Slow Start

• Now suppose window grows according to slow start.

• Will show that the latency of one object of size O is:

65

R

S

R

S
RTTP

R

O
RTTLatency P)12(2 










where P is the number of times TCP stalls at server:

}1,{min  KQP

- where Q is the number of times the server would stall
 if the object were of infinite size.

- and K is the number of windows that cover the object.

TCP Latency Modeling: Slow Start (cont.)

66

RTT

initiate TCP

connection

request

object
first window

= S/R

second window

= 2S/R

third window

= 4S/R

fourth window

= 8S/R

complete

transmissionobject

delivered

time at

client

time at

server

Example:

O/S = 15 segments

K = 4 windows

Q = 2

P = min{K-1,Q} = 2

Server stalls P=2 times.

TCP Latency Modeling: Slow Start (cont.)

67

R

S

R

S
RTTPRTT

R

O

R

S
RTT

R

S
RTT

R

O

stallTimeRTT
R

O

P

k
P

k

P

p

p

)12(][2

]2[2

2latency

1

1

1

















 window after the timestall 2 th1 k
R

S
RTT

R

S k 













ementacknowledg receivesserver until

segment send tostartsserver whenfrom time RTT
R

S

 window k the transmit totime2 th1 

R

Sk

RTT

initiate TCP

connection

request

object
first window

= S/R

second window

= 2S/R

third window

= 4S/R

fourth window

= 8S/R

complete

transmissionobject

delivered

time at

client

time at

server

TCP:
Flow Control

68

TCP Flow Control

receiver: explicitly informs
sender of (dynamically
changing) amount of free
buffer space

– RcvWindow field in
TCP segment

sender: keeps the amount of
transmitted, unACKed data
less than most recently
received RcvWindow

69

sender won’t overrun
receiver’s buffers by
transmitting too much,
 too fast

flow control

receiver buffering

RcvBuffer = size or TCP Receive Buffer

RcvWindow = amount of spare room in Buffer

70

TCP Flow Control: How it Works

• spare room in buffer
= RcvWindow

70

source port # dest port #

application
data
(variable length)

sequence number

acknowledgement number

rcvr window size

ptr urgent data checksum

F S R P A U
head
len

not
used

Options (variable length)

TCP: setting
timeouts

71

TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value?

• longer than RTT

– note: RTT will vary

• too short: premature
timeout

– unnecessary
retransmissions

• too long: slow reaction to
segment loss

Q: how to estimate RTT?
• SampleRTT: measured time from

segment transmission until ACK
receipt

– ignore retransmissions,
cumulatively ACKed segments

• SampleRTT will vary, want
estimated RTT “smoother”

– use several recent measurements,
not just current SampleRTT

72

73

High-level Idea

Set timeout = average + safe margin

74

Estimating Round Trip Time
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T

T
 (

m
il

li
se

co
n

d
s)

SampleRTT Estimated RTT

EstimatedRTT = (1- )*EstimatedRTT + *SampleRTT

 Exponential weighted moving average

 influence of past sample decreases exponentially fast

 typical value:  = 0.125

 SampleRTT: measured time from
segment transmission until ACK
receipt
 SampleRTT will vary, want a
“smoother” estimated RTT

use several recent
measurements, not
just current SampleRTT

75

Setting Timeout
Problem:

• using the average of SampleRTT will generate
many timeouts due to network variations

Solution:

• EstimtedRTT plus “safety margin”
– large variation in EstimatedRTT -> larger safety margin

TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-)*DevRTT + *|SampleRTT-EstimatedRTT|

(typically,  = 0.25)

 Then set timeout interval:

RTT

freq.

76

An Example TCP Session

